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A CONGRUENCE THEOREM FOR CLOSED
HYPERSURFACES IN RIEMANN SPACES

HEINZ BRUHLMANN

Introduction

We consider two closed oriented surfaces F and F in Euclidean 3-space E®
and a differentiable map @: F — F preserving the orientation. The word dif-
ferentiable always means differentiable of class C~. Furthermore, we assume
that the set of points on F where the lines (p, p), p = @(p), are tangent to F
does not have inner points. Then the following theorems are known :

A) If all the lines (p, p) are parallel and H(p) = H(p) (H and H are the
mean curvatures of F and F respectively), then the surface F is obtained from
F by a single translation, i.e., the distances pp are the same for all points p
on F (H. Hopf and K. Voss [8]).

B) If all the lines (p, p) go through a fixed point 0 (which does or does
not lie on F or F) and if rH(p) = 7H(p) (r and 7 are the distances of p and
P from 0), then F is obtained from F by a homothety, in other words the ratio
F/r is constant (A. Aeppli [1]).

In order to generalize these two theorems we consider the following case:
Let R*** be an (n + 1)-dimensional Riemann space, and @(p,s) be a one-
parameter group of transformations of R™*! into itself. Furthermore, let F™
and F” be two n-dimensional hypersurfaces of R**! such that the points of F»
are given by the formula:

=900/ fp), peF”,

where f(p) is a differentiable function of F*. To generalize the condition for
the mean curvatures, we have to introduce an additional family of hyper-
surfaces, one for every point of F*, given by the formula:

Fr = @(F, f(p)) .

Then the point p = @(p, f(p)) lies on the hypersurfaces F* and F; and we
define:

H(p) = mean curvature of F* at p ,
H(p) = mean curvature of F7 at p .
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We denote by S the set of points of F* where the vector tangent to the orbit
of &(p, s) through p lies in the tangent space of F". For this general case, the
following two theorems are known. '

I) If H(p) = H(p) for all e F*, §(p, s) is a group of homothetic trans-
formations, and the set S of the exceptional points is nowhere dense in F*,
then F* and F* are congruent mod ¢; in other words, f(p) = const. (Y.
Katsurada [9]). ’

II) If H(p) = H(p) for all pe F*, and the set S is empty, then F* and F*
are congruent mod ¢ (H. Hopf and Y. Katsurada [7]).

Theorem II is not a generalization of Theorem A, since in this case we
always have exceptional points. However it suggests that Theorem I is true
without the additional assumption of homotheticity.

Theorem I has been proved by Y. Katsurada by using the method of dif-
ferential forms. For the proof of Theorem II the authors use the strong max-
imum principle of E. Hopf [5]. In [10], K. Voss gave a proof of Theorem A,
using a generalized maximum principle. However, his proof worked only in
the case where F and F are real analytic surfaces. Later, P. Hartman [3] gave
a proof without using the assumption of analyticity, by generalizing the strong
maximum principle for elliptic differential equations. In this paper we give a
proof of the following theorem, which is a generalization of Theorem II since
we may have exceptional points, but which is not a generalization of Theorem
I since the assumption on the exceptional points is stronger than that in
Theorem 1. '

Theorem. Let F*, F*, F? be closed oriented hypersurfaces in R™*' as ex-
plained above, and assume all maps to be orientation-preserving. Furthermore
let o(p) = (w, ), where w is the vector tangent to the curve @(p,s), —e <
s < + ¢, at P, and 7 is the normal vector of F* at p. If grad ¢ % O whenever
o =0 on Fr, and H(p) = H(p) for all pe F*, then the hypersurfaces F* and
F* agre congruent mod .

1. Variation of the mean curvature

. Let F* be a hypersurface in an (n + 1)-dimensional Riemann space R**!
given locally by the equations
x"=xf(u"), i=13"'3n+1; a=17"'7n°

Then the tangent space to the surface is spanned by the »n linearly independent
vectors t, = (0x?/ou*)9/ox*. For the covariant derivative of the vector-field
t, in the direction of 7; in R**! we get

*xt | .y OxT GxFN\ 3
,‘0""‘— - T F’:ﬂc ? _)____0_ ’
gugu? du® gu? / oxt

Dﬁtc_—-—— V‘ﬁ a=<

and for the second fundamental form
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241 i Ak
laﬁ = (Dazﬁs n) = gil( ax ¢ axj OXk )nl ’

LIS T
ou~ou? o ou® ouf

where n = n‘9/dx* is the normal to the hypersurface, and g;; is the metric
tensor of the space R**!. The formula for the mean curvature of the hyper-
surface is

H=gl,/n=1In,

where g< is the inverse of g,, = g;;(x*/ou“)ox [ou?.
Now let &(p, 5s) be a one-parameter group of transformations of R™*!, and
F" and F" be two hypersurfaces such that

Fr = {@(p, f(p)), p € F*}

as in the introduction. We introduce an additional family of hypersurfaces,
depending on a point p € F* and a parameter ¢, 0 < ¢ < 1, given by the equation

Fp, ) = {@(q, tf(g) + (1 — Df(p))|q e F"} .

Since O(p, tf(p) + (1 — Df(p)) = P(p, f(p)) = P, the point p lies on all the
hypersurfaces F*(p, 1), p fixed and 0 < ¢ < 1. Furthermore we have, fort = 1,

Fxp,1) = {®#(q,f(9))|qge F"} = F" ,
and, fort =0, v

F(p,0) = {#(q,f(p) g e F*} = F3 .
From these relations we get

' dH(p,

E@—m@=f ﬁ”a,

0

where H(p, ?) is the mean curvature of F*(p, ¢) at the point p.
The variation of the mean curvature gives
dH(p,t)/dt = l,,dg"/dt + g**dl/dt,
and by differentiating the relation g**g,, = 5 we get
dg*?|dt = —g*g* dg,;/dt = —g¥g*{(dt./dt, 1) + (1,,dt,/dD)} .

Furthermore, by taking the covariant derivative of the relations (n,n) =1
and (n,?,) = 0, we obtain (n, D,n) = 0 and (D.n,t;) + (n,D,t;) = Oor D,n
= A%t, with 22 = —(n, D t)g". Hence

Dn= —(nDg)g"t, ,
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dges s [ dL. di, ;
g =9 gﬁ{(j’t‘)—*_(t” %) Oum =200

In order to compute the second term in the above expression for dH(p, 1)/dt,
differentiating the relations (n, n) = 1 and (n, t,) = 0 with respect to ¢ we get
(dn/dt,n) = 0 and (dn/dt,t) + (n,dt,/d) = 0, or dn/dt = 2°t, with 2* =
—(dt,/dt, n)g=?. Hence

dn/dt = —(dt,/dt, m)g=*t, ,

dl d d ce [ di
1 0iy = ) - T80
9u = = 97 5y Peter ) = g oDty ) — g7\ S50

where I'%; = (D,t;, t,)g”. Finally we get the following formula for the variation
of the mean curvature:

dH _ aﬁ(_q_Dt ) ) ,,ﬁ(D dzﬁ>_ s (dta )
dt g dt a‘Br n + g an’ dt g a8 d[ »nj .

Now using the definition of the hypersurfaces F*(p, 1):
Fr(p, 1) = (9(q, (@) + (1 — Df(p))|qe F},
or in local coordinates
xyus, ) = 0w, ff(u?) + (1 — Hf(p)) ,
where f(p) is independent of the u®, we get
xt = 0xt /ou” = 0D /ou” + HoD*/as)of [ou” ,

so that for the tangent vectors 7, of the hypersurface F*(p, 7) at the point 7 we
have

t, = (69! /3u|, + Ww'téf/ou?a/ox ,
where w' = 50(p, 5)/05/,-,, and by differentiating with respect to ¢

di,/dt = wof louc w= w3/ox".

Furthermore
D, = (9x%/ou® + I', xix§)a/ox* ,
)
d (d ax’ . ox? . ~6‘x’f) a
=Dty =|— 2= + I e xt 4 bl 28
dar dr ow gy % T Lt )2
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For the derivative of xi we get

ax; — 82(27"‘ 1t o'gr af— 41 Pt of
ou? aucou’? ou°os ou® oufos ou°
L e O o o 00

as®  ous ouf ds ouout

Since 3°@*/ou"ou’, 5°9*/ouos, 3°P*/os%, o®* /o5 do not depend on ¢ when con-
sidered only at the point p on the hypersurfaces F*(p, 1), we get for the
derivative of the above expression with respect to z:

d oxt _ ow' of ow'  of 12 ow' of of . . Ff

g 292

dr ouf  ouc out ou’ ous as ou* ouf - ououf
SO
d of of of ow of of
2 D= Dw-2_ 4 Dw 21
ar T Y e T O e T du, s o

Therefore the formula for the variation of the mean curvature in our case is
the following:

dH ws_0f «s O(w,n)  of (aw > « Of Of
—— = (w, 2g°f 212 2 ——, e
dt (w, mg Quou? T g ou* ou? T os ")9 ou* ouf

6f

— %I (w, n) —

2. A lemma on partial differential equations

For the proof of our main theorem we need a generalization of the strong
maximum principle for elliptic partial differential equations. We consider a
linear differential expression of the form

of
L= 5 4,02+ § Bw- L,

where 4,,(x) and B,(x) are differentiable functions, together with a differenti-
able function ¢(x) in 2 normal domain G of the n-dimensional number space
R™. We assume that ¢(x) and L(f) have the following properties:

a) grad ¢(x) = 0 whenever ¢(x) = 0,

b) >2,., A.(x)2°4? is positive definite for every x with ¢(x) > 0, negative
definite for every x with ¢(x) < 0, and identically O for every x with ¢(x) =

Then we prove the following

Lemma. Let f(x) be a solution of L(f) = 0, and x, be a point in G such
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that f(x) < f(x,) for all x in G. If either p(x,) =0 or ¢(x,) =0 and
22y B (x)(0p/8x7)(x;) > O, then f(x) = f(x,) in a neighborhood of x,.

This lemma is a special case of a theorem proved in the paper [4] by Hartman
and Sacksteder. However, since we use only a simple case, we give a sketch
of the proof.

Proof. The case ¢(x,) # O follows directly from the strong maximum
principle of E. Hopf [S5]. Therefore we may assume ¢(x,) = 0, and

_1 B, (3p/3x*)(x,) > 0. The proof for this case is a modification of the proof
of E. Hopf’s second lemma [6]. Since by assumption grad ¢ = O whenever
¢ = 0, the set of points where ¢(x) = 0 is a differentiable curve through x,.
Therefore there exists an open ball X, in G such that its boundary has exactly
the point x, in common with the curve ¢(x) = 0 and that ¢(x) > Oin K, — x,.
We choose its center as the origin of the coordinate system, and set r = |x|, r,
= | x,|. We may assume f(x,) = 0 and f(x) > 0 in K,. By the strong maximum
principle this implies either f(x) > 0 in K, — x, and f(x,) = 0 or f(x) = 0 in
K,. We show that f(x) > 0 in X, — x, leads to a contradiction. We consider
the auxiliary function s(x) = e~"* — e"i, which has the properties: A(x) > 0
for |x| < ry, A(x) = O for |x| = r,, and

L(h)(x) = Z B,

" (x)=—2e73 Bag=c3 B, 6390 (x), ¢>0,
a=1 a=1 X

since the vector x, = (x}, - - - , x3) is a negative multiple of grad ¢. Therefore
L(h)(x,) > 0, and hence L{(#) > 0 in the closure of a ball K, with center x,.
Now we consider the function g(x) = f(x) — ¢h(x) in the domain K = K, N K,.
Then g > O on §, N X,, where S, = boundary of K, and g(x,) = 0. Further-
more, by choosing ¢ > O sufficiently small, we also have ¢ > 0 on §, N K|,
since f > O there.

Since L(f) = 0, and L(%) > O in K we have L(g) < 0 in X, and therefore
g = 0 in K by the strong maximum principle. Hence (dg/dn)(x,) < 0, where
dg/dn is the derivative in the direction of the outer normal of K. But then

U () = 99 L
an (xo) = an (xo) +Edn (xo) <0,

since (dh/dn)(x,) < 0. This contradicts the fact that grad f(x,) = 0.
Proof of the Theorem. By using the formula for the variation of the mean
curvature and the relation

Hp) — Hp) = flili;f’_’)dz -0,

0

we get the following differential equation for the function f:
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QUL MR oy

=0,
el 7 Guduf 27

where
A= [ wn@gar
0
B, = f 1{257"5—3(“” n oL 2z<23,n)g"’~—af — g 5w, n)}dt
) ou* os ou*
From the relation
(w, n())dA(t) = (w, A)dA

(proved in [2]), where dA(2) is the volume element of the hypersurface F*(p, 1)
at p, it follows that if (w,7) = 0, then (w, (1)) = O forall 1, 0 < 1 <1, and
that if (w,7) = 0, then (w, n()) = O for all z. Therefore by setting ¢(p) =
(w, 71), 37,1 A,2°47 is positive definite if ¢ > 0, negative definite if ¢ < O,
and identically O if ¢ = O, since g=*(2) is positive definite for every 1.

Now let p, be a maximum point of f, so that f(p) < f(p,) for all p in F=.
Such a point exists, since F* is supposed to be compact. Then either ¢(p,) = 0,
or o(p,) = 0; the latter implies that (w, n(#)) = 0 for all 7, and

B, = Zfl(gﬂﬁa_(w_’ﬁ)_)dz ,
. ou”

Since (w, n(#)) = 0, if (w,7) %= 0, then the set of points p on F* where
(w, n(1)) = O is the same as the set where (w, i) = 0. Furthermore, if (w, 7)
> 0, then (w, n(?)) > 0, and

grad (w, n(?)) = ¢(2) grad (w, i) ,
with ¢(2) > 0. Thus

3 % gy =2 f ges B0 n(@) 3w, m)

=1 ouf ou- ou’
—2 f c(i)ge IR 3w, ) 4 o
3 ou” ouf

since g** is positive definite and ¢(#) > 0, ¢(1) = 1. Therefore by our lemma,
f(7) = f(p,) in a neighborhood of B, ; in other words, the set U, = {p ¢ F*|f(p)
= f(py)} is open in F”. This implies that F* = U, U U,, where U, = {p ¢
F2|f(p) < f(Py)}, so that F” is the disjoint union of two open sets. Since F*
is connected, it follows that U, = F*, i.e., f(p) = const. on F*. Hence the
theorem is proved. :
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